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Based on a solution of a system of the Poisson–Vlasov equations a dispersion equation is obtained for a wide
class of initial disturbances taking into account the influence of boundary conditions on development of the
instability in ionized beams. A procedure for determining the stability limit for both the unrestricted and re-
stricted multicomponent ionized beams is suggested.

Introduction. The instability of ionized beams is the process of buildup of small disturbances with time rela-
tive to their equilibrium state [1]. However, this problem has not been studied to the fullest extent, especially concern-
ing simulation of the process of beam propagation in real systems [2, 3]. In this aspect, investigations of characteristics
of the development of the instability in multicomponent restricted beams are of scientific and practical significance.
For instance, in probing the earth’s ionosphere by a quasineutral beam it is important to know the conditions of insta-
bility development in the ion beams of inert gases (argon, xenon, etc.). In simulation of the process of beam propaga-
tion in power and technological plants it is desirable to have information about the influence of the boundary
conditions and dimensions of a system on the stability of this process.

In the present work, by the instability of ionized beams is understood the process of their destruction caused
by a deviation of the velocity distribution function of particles from its equilibrium value (Maxwellian). In solving the
problem on the instability of plasma beams it is possible to analyze only the electrostatic instability, assuming that the
disturbances of an electric field are potential. This assumption is justified by the fact that under the action of the elec-
trostatic instability the equilibrium state of a plasma changes before manifestation of the magnetic effects since, as
analysis shows, the increments of the electrostatic instability are substantially larger than those of the electromagnetic
instability [1–4]. Development of the electrostatic instability leads to fluctuations of the electrostatic potential, thus
causing a scatter of the charged particles by inhomogeneities of the potential which can be considered as an increase
in the frequency of electron-ion collisions.

Dispersion Equation. We will consider a nonstationary system representing a multicomponent plasma with
relative motion of its components. According to the collisionless model the small disturbances of such a system satisfy
the linearized Poisson–Vlasov system [1]:
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Applying to system (1) Laplace transformation with respect to time t and Fourier transformation with respect
to the coordinate x at the zero boundary conditions, we arrive at the following expression for the Fourier transform of
the electrostatic potential ϕ:
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If in Eq. (2) it is assumed that ϕ(x) = exp (ikx) or if the electrostatic potential ϕ(x) is considered to be a
smooth function that sufficiently rapidly decreases at infinity, i.e., such that the Fourier transformation exists for it in
the classical sense, then from Eq. (2) the following dispersion relation stems for an unrestricted system [2]:
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Let us consider a restricted system with the boundary conditions

ϕ (ω, 0) = ϕ (ω, l) = 0 . (4)

Any locally integrable function can be represented by the Fourier series
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In this case, a Fourier transformation for ϕ(x) is as follows:
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By virtue of boundary condition (4), expression (6) is transformed as
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Substituting (7) into (2) and multiplying the scalars of both sides of (2) by 
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following expression for the Fourier transform of a disturbance of the electrostatic potential:
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The problem on development of oscillations in a plasma reduces to determination of the denominator zeros on
the right-hand side of expression (8). Equating the denominator of the latter to zero, we obtain the dispersion equation
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which in a linear approximation generalizes a wide class of the disturbances in ionized beams with account for the
boundary conditions and allows investigation of their stability.

Of practical interest is an ionized beam consisting of the ions of inert gases (argon or xenon) compensated by
electrons that propagates in a plasma medium (for instance, in the earth’s ionosphere a heavy component of which is
an oxygen ion). In this case, the problem on the stability of an ionized beam, in which the concentrations of electrons
and ions much exceed the concentrations of these components in the ionosphere, reduces to determination of the elec-
tron-ion instability. A similar problem emerges when an electric current runs in the ionosphere.
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Unrestricted Multicomponent Beam. We will consider a one-dimensional model for an unrestricted multi-
component plasma beam. The dynamics of the electrostatic small-amplitude oscillations in such a system is determined
by a system of the Poisson–Vlasov equations [1] from which in a linear approximation dispersion equation (3) follows;
it can be written in the form [2, 5]
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where ωpj = (4πnjej
2 ⁄ mj)

1 ⁄ 2 is the plasma frequency of the jth component; for electrons, ωp.e = 2π104 √ne  Hz.
Mathematical formulation of the problem on the stability of solutions of the system of equations (1) implies

determination of such solutions of dispersion equation (10) for which the imaginary part of the complex frequency is
Im ω > 0. In this case, in a linear approximation a solution of the system of the equations will be unstable since the
oscillation amplitude of small disturbances increases with time without limit. As analysis shows, the limit of the beam
stability is determined by the critical velocity of charged particles u0, which, in turn, depends on a number of the ther-
mophysical parameters such as the temperature, the concentration, the mass of the charged particles, and so on. By the
critical velocity is understood such a directed velocity of the charged particles of a plasma u0 that for any other rela-
tive velocity of the particles v < u0 no plasma instability develops. Thus, the problem on determination of the limit of
the beam instability of the plasma reduces to determination of the critical velocity.

Let us consider the case where the initial velocity distribution of particles f0 is Maxwellian:
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 ⁄ mj  is the thermal velocity of the jth component. With account for this relation, dispersion equation
(10) can be written for the distribution function as
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First, we will analyze the instability of a two-component plasma. For this case, dispersion equation (11) is
written in the form [2]

k
2
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−2
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−2
 G (Z2) = 0 . (12)

We will assume that the directed velocity of the second component is equal to zero. This is achieved by in-
troducing the coordinate system related to the motion of this component. Then
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A solution of dispersion equation (12) is determined by the points of intersection of the curves

ξ1 = − (kd1)2
 − G (Z1) , (14)
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We consider k to be a real number; then the circular velocity ω is a complex velocity. If the imaginary part
of the complex frequency is Im ω > 0, then the amplitude of oscillations increases with time, thus leading to instability
of the system. Consequently, the boundary of the region of instability is determined from the condition Im ω = 0 or,
which is the same, by solving Eq. (12) at Im Z1 = 0 (j = 1, 2), which corresponds to intersection of curves (14) and
(15) given above at real values of the argument.

It is pertinent to note that for sufficiently large k the curve corresponding to dependence (14) shifts far to the
left along the real axis Re G(Z) so that it does not intersect with curve (15) at Im Z1 > 0, i.e., only damped modes
Im ω > 0 will take place in the plasma. Consequently, there exists a value of k0 dependent on d1 and d2 such that any
wave of length λ < 2π ⁄ k0 damps.

The critical value of the velocity u01 determining the limit of instability depends on k. We will consider the
case k = 0 (an infinitely long wave) since to precisely this value of k a minimum critical velocity corresponds. Other-
wise, any wave in a plasma will damp if the directed velocity is v1 < u01, where u01 is the critical velocity determined
at k = 0. For the fixed relation d1

2 ⁄ d2
2 at k = 0, we determine graphically the points Z1

0 and Z2
0 and from relations (13)

obtain the following expression for the critical velocity:
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For the case of the electron-ion instability of the plasma containing oxygen, argon, and xenon, Fig. 1 provides
the values of the critical velocity of electrons u01 based on their thermal velocity vT1

. For comparison, the correspond-
ing critical velocities for hydrogen ions are also given. From the figure it follows that an increase in the mass of the
ionic component leads to a decrease in the critical velocity of the electrons. This difference is most pronounced at the
condition 1 < d1

2 ⁄ d2
2 < 10. The relation d1

2 ⁄ d2
2 at the equal concentrations of the components is equal to the ratio of the

electron and ion temperatures T1
 ⁄ T2. If the directed velocity of electrons is commensurable to their thermal velocity,

this case corresponds to the limit of instability. If the electron temperature is two or threefold higher than the tempera-
ture, then at v1 = vT1

 the instability of the plasma develops. Thus, for T1
 ⁄ T2 = 2, when electrons move relative to oxy-

gen ions, we have u01
 ⁄ vT1

 = 0.521. It should be noted that in the presence of a current in the beam, v1 >> vT1
 as a

Fig. 1. Ratio of the critical u01 to thermal vT1
 velocities of electrons for the

electron-ion instability of the plasma containing ions of oxygen, xenon, and
argon (1), and hydrogen (2).

Fig. 2. Ratio of the critical u01 to thermal vT1
 velocities of ions for the ion-ion

instability of the plasma containing the ions of argon (1) and xenon (2).
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rule, and the beam current is, consequently, unstable. Figure 2 gives data for the ion-ion instability [5]. In this case,
in formula (16) by vT1

 is understood the thermal velocity of oxygen ions while by u01, their directed velocity. The de-
pendence shown in Fig. 1 is similar to the dependence for the electron-ion instability (Fig. 2). However, the thermal
velocity of the electrons is 171 times higher than the thermal velocity of the oxygen ions at the same temperature.
Consequently, in the case of the ion-ion instability, the absolute value of the critical velocity of the oxygen ions rela-
tive to xenon or argon ions is 171 times smaller than that of the critical velocity of the electrons in the case of the
electron-ion instability. This means that the ion-ion instability develops even if the electron-ion instability does not
exist.

Thus, the problem on determination of the critical velocity for the four-component plasma consisting of two
components of ions and two components of electrons, where the ions and electrons move with the same velocity
through the plasma at rest, reduces to the problem on determination of the critical velocity for the ion components.
For instance, for the motion of xenon ions with a concentration of 1013 m−3 and a temperature of 0.3 eV relative to
the oxygen ions with a concentration of 1012 m−3 and a temperature of 0.15 eV the critical velocity is u01

 ⁄ vT1
 =

0.471.
Restricted Multicomponent Beam. We will investigate the influence of boundary conditions on the instability

of plasma oscillations within the framework of formal hydrodynamics, i.e., we will assume that there is no heat scat-
tering and the initial distribution functions are the Dirac δ-functions [6].

Integrating the right-hand side of Eq. (9) and employing the definition of the derivative of the δ-function, we
arrive at the dispersion relation
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In the case of a restricted system, periodic oscillations (Re ω = 0) are of particular interest. Let us consider
the left-hand side of Eq. (17) as a function of F(ω) (Fig. 3). The condition of the presence of complex solutions of
Eq. (17) is equivalent to the case where all minima of the function F(ω) lie higher than unity. Decomposing each term
on the left-hand side of Eq. (17) according to the equality
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Fig. 3. Illustration of changing the function F(ω) for the multicomponent
plasma.
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we obtain the dispersion equation for an unconfined plasma. Each component moving in the same direction disinte-
grates formally into two opposite waves moving with the same absolute velocity and plasma frequencies that are √ 2
times smaller than the initial one.

It is pertinent to note that in the vicinity of Re ω = 0 a qualitative difference between the restricted and un-
restricted beams — an unstable branch of the oscillations appears that has not existed earlier in the unrestricted system
— is observed, which is attributable to the boundary conditions. The condition of buildup of these oscillations is pre-
sented by the inequality
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From this relation it follows that the longest wave is the most unstable one and hence for the restricted system
k = πn ⁄ l (n = 1, 2, ...), the condition of instability acquires the form
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that allows simple geometric interpretation. If, in the N-dimensional space, we plot the complex ωpj
 ⁄ kvj on each axis,

then the external region of the N-dimensional sphere with unit radius is the region of instability. The case of the two-
flow instability is depicted in Fig. 4.

Let us consider several particular cases.
1. For a restricted electron beam moving relative to immobile infinitely heavy ions, the condition of instability

acquires, according to (19), the form ωp.e
2  > (πnv1

 ⁄ l)2, where v1 is the directed velocity of the electron beam.
2. Let two identical plasma components move in opposition with the same velocity v1. In this case, the con-

dition of instability development ωp1
2  > 0.5(πnv1

 ⁄ l)2 coincides with the corresponding condition for an unrestricted sys-
tem of counterbeams only with the difference that in the latter instead of the value of πn ⁄ l an arbitrary wave number
k is used. From comparison of the instability conditions of the restricted and unrestricted systems, it follows that if the
function F(ω) of the unrestricted system is even and vj ≠ 0, then the conditions of instability development in the vicin-
ity of ω = 0 in the unrestricted system are similar to those in the restricted system (Fig. 3).

3. The region of two-flow instability corresponds to the hatched region in Fig. 4. In this case, the condition
of instability is represented by the inequality

Fig. 4. Region of instability for the two-component confined plasma.
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If, in this expression, one of the plasma frequencies tends to zero, the condition of instability corresponds to
the Pierce problem [2]. From the dispersion equation for an unrestricted system (10) it follows that when one of the
plasma frequencies tends to zero, only real solutions of the equation F(ω, k) = 1 are possible for two unrestricted flows,
since one of the two asymptotes disappears. In a restricted system (unlike the unrestricted ones), complex-conjugate so-
lutions of the equation F(ω, k) = 1 can exist.

4. In practice, the problem on motion of a restricted quasineutral beam in an ionospheric plasma is interesting.
According to expression (19), the condition of instability of such a beam is the inequality
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where ωp.e1 and ωp.e2 are the plasma frequencies of electrons of the beam and the ionosphere; ωp.i1 and ωp.i2 are the
plasma frequencies of ions of the beam and the ionosphere; v1 and v2 are the directed velocities of ions of the beam
and of the ionospheric plasma relative to the beam boundaries, respectively. In some applications, the case is important
where the boundaries of the beam move in the ionosphere; then by l must be meant the distance between the bounda-
ries.

Conclusions. A procedure of determination of the conditions of development of the instability of ionized mul-
ticomponent beams is developed that allows for the influence of such factors on the instability development as the
ratio of the temperatures and concentrations of the components, their directed velocities, and dimensions of the system.
It is shown that in restricted ionized beams the spectrum of wave numbers narrows from continuous to discrete and a
new branch of the possible instability appears. The suggested calculated model of determination of the boundary of
stability of ionized beams is in fair agreement with the experimental studies [6].

NOTATION

d, Debye radius; e, particle charge; f, disturbance of the velocity distribution function of particles relative to
its stationary homogeneous background; f0, initial value of the velocity distribution function of particles; k, wave num-
ber; l, beam length; m, particle mass; n, natural number; nj, number of particles of the species j per unit volume; T,
temperature; t, time; u0, critical velocity of particles; vj, directed velocity of particles along the coordinate x; vT, ther-
mal velocity of particles; x, coordinate directed along the beam; δ(x), delta-function; ε, dielectric constant; κ,
Boltzmann constant; ξ, variable in the Fourier transformation; ϕ, disturbance of the electrostatic potential; ω, circular
frequency; ωp, plasma frequency of a particle. Subscripts: j, number of the component (particles); e, electron parame-
ters; i, ion parameters; 0, initial value; p, particle.
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